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The modeling of flapping flight dynamics consists of a multi-body system that is nonlinear
and time-varying. An aerodynamic model is required along with control laws, flight dynamics
and actuation mechanism. A review of the existing models in current literature is performed.
A simple analytical model is used to describe the aerodynamics with leading edge vortex and
rotational lift being the major contributors. This model calculates the aerodynamic loads and
moments acting on the vehicle. Then, the longitudnal flight dynamics are computed using
these loads and moments with vertical displacement and velocity, and flapping anlge and
rate as the states. The aerodynamics and flight dynamics are modeled in Simulink using the
characteristic parameters of a Hawkmoth. The model is actuated using an input torque that
governs the flapping angle and rate. The results produced show that the input torque can be
maniplulated to acheive ascend, descend and hover. Flight can be improved by including active
pitch control instead of using passive pitching. As the system grows more complex, adaptive
controllers can prove to be more efficient.

I. Nomenclature

αm = mean angle of attack
c = mean chord length
CLα = three dimensional lift curve slope
d̂ = distance between the wing root hinge point and the wing’s center of gravity
η = pitching angle of the body
Ix, Iy, Iz = moment of inertia about x, y and z axis
Iyb = moment of inertia about the yb axis
m = total mass
mb = mass of the body and wing
mw = mass of the wing
φ = flapping angle of the wing
ψ = yaw angle
R = wing radius
rcg = distance between the wing root hinge point and the wing’s center of gravity
ρ = air density
τφ = input torque
θ = plunging angle

II. Introduction

In an attempt to optimize flight vehicles, Unmanned Aerial Vehicles (UAV) have been developed with specific
objectives. There are several subcategories of UAVs, one of them being micro aerial vehicles that use flapping flight

called Flapping Wing Micro Aerial Vehicles (FWMAVs). DARPA (Defense adavanced Research Projects Agency)
has set the span of Micro Aerial Vehicles (MAV) at 15cm and they are generally smaller than UAVs but bigger than
NAVs (Nano Aerial Vehicles) and, typically, autonomous. The idea behind developing FWMAVs is to mimic nature,
which allows for sophisticated biological surveillance. Apart from biological, military survellaince can also make use of
MAVs given the small size and inconspicuous appearance.
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Fig. 1 The three fixed axis systems of FWMAV[1].

The general model of FWMAV consists of two parts; the flight dynamics which includes kinematics, aerodynamic
modeling and equations of motion, and the control laws which establish the actuation mechanism. The flapping
kinematics are governed by the Euler angles of the wing with respect to the body. The flapping angle is denoted by
φ, plunging angle by θ and pitching angle of the body by η. Figure 1 shows the three fixed axis used to formulate
the flight dynamics problem of FWMAV. In the figure, xI , yI and zI represents the inertially fixed frame, xb, yb and
zb is the body-fixed frame and xw , yw and zw is the wing-fixed frame and, r represents the position vector of the
origin of the wing-fixed frame with respect to the origin of the body fixed frame. In the body-fixed frame yb points
to the right wing, xb points in the direction of the forward velocity and zb is perpendicular to the two axes. This
body-fixed frame can be related to the inertial frame through any sequence of Euler angles. In order to get zero wing
kinematic angles, the body-fixed frame and wing-fixed frame are made to coincide. Hence, the sequence of φ- θ- η, i.e.,
flapping-plunging-pitching is used to describe the wing-fixed frame with respect to body-fixed frame. In this project, a
hawkmoth inspired vehicle is designed to demonstrate insect flight. The flapping kinematics are established using the
equations of motion, followed by the calculation of forces and moments acting on the vehicle. These aerodynamic loads
and moments are used to simulate the insect flight in different flight modes.

The objective of the kinematics is to manipulate the velocity vector with respect to the airfoil. Then the dynamic
equations of motions defining the aerodynamic loads are written in the body-fixed frame. The lift and drag are calculated
with respect to body fixed frame. The dynamic equations of a FWMAV are the same as that of a conventional aircraft
are shown in Equations 1-6 and the kinematic equations are shown in Equations 7-9 where the derivatives of the body
Euler angles ψ, θ and φ (yaw, pitch, flapping) govern the kinematics.

m( Ûu + qw − rv + g sin θ) = X (1)
m(Ûv + ru − pw + g sin φ cos θ) = Y (2)
m( Ûw + pv − qu + g sin φ cos θ) = Z (3)

Ix Ûp − IxzÛ(r) + (Ix − Iy)qrw − Ixzpq = L (4)

Iy Ûq + (Ix − Iz)rwp + Ixz(p2 − r2
w) = M (5)

Iz Ûrw − IxzÛ(p) + (Iy − Ix)pq + Ixzrwq = N (6)

Ûψ = (q sin φ + r cos φ)/cos θ (7)
Ûθ = q cos φ − r sin φ (8)
Ûφ = p + (q sin φ + r cos φ) tan θ (9)
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A. Flapping Kinematics
There are three general configurations of flapping kinematics of FWMAVs. The first kind of cofiguration assumes

harmonic functions which simplifies the analysis and in the second, the kinematics are inspired from insects and the
third kinematic configurations are designed for specific manauevering purposes. In [2], Wang et. al tests different
flapping wing shapes to find the optimal configuration with harmonic kinematics. Quasi steady aerodynamic modeling
is used with varying wing shape parameter and the results show that fully actuated harmonic kinematics can be very
efficient. Kinematic configuration, inspired from nature, is examined in depth in [3]. In ornithopter flight there are two
degrees of freedom whereas insect flight requires three degrees of freedom; the flapping wing motion, the change in the
stroke plane angle and wing rotation. Insect wing kinematics, as studied in [3] by Abas et. al, are of two different types:
water treading and hovering. The 3D insect flight is extended from the 2D bird flight kinematic problem.

The third configuration where the kinematics are designed for specific control purposes is reviewed by Taha [1]. To
acheive high control authority, Schenato et. al in [4] hovering kinematics with specific paramterization is proposed. The
flapping angle is set using a constant angular velocity. Each wing is equipped with an actuator to control the flapping
angle. For maximum lift, passive pitching is utilised and the angle of attack is maintained at 45°. The kinematic
equation is described in Eq. 10.

φ(t) =

{
A0(1 + κ)(1 − 2t

ρT ) + γA0, 0 ≤ t ≤ ρT

A0(1 + κ)(2 t−ρT
(1−ρ)T − 1) + γA0, ρT ≤ t ≤ T

}
(10)

In the above equation, γA0 represents a bias, κ controls the amplitude of the motion and ρ is the downstroke duration
relative to the whole cycle. Hence, γ, κ and ρ are the three kinematic parameters that can be controlled. If ρ = 1/2 then
symmetric flapping is performed. However, asymmetric flapping is desired to generate thrust on both wings causing
yawing moments. Using a quasi steady aerodynamic model, the loads and moments are linearized and then related to
the kinematic parameters. A linear map, which is assumed to be a control effectiveness matrix, is created from the six
kinematic parameters. The linear map between the the kinematic parameters for both wings and aerodynamic loads is
shown in Eq. 11.

w1 = −sinc(
A0

4
)[(ρLW −

1
2
) + (ρRW −

1
2
)] (11)

w2 =κLW + κRW

w3 = − sinc(
A0

4
)[κLW − κRW ]

w4 = − sinc(
A0

4
[γLW + γRW ]

w5 =(ρLW −
1
2
) − (ρRW −

1
2
)

It is noteworthy that the amplitude changes the vertical lift force w2, i.e., κ must not be zero. A rolling moment, w3,
can be generated if κLW and κRW are not equal, i.e., the amplitude change on the two wings is asymmetric. Forward
thrust, w1, can be produced if there’s any change in speed between the upstroke and downstroke, i.e. ρLW must not
equal to ρRW . The pitching moment, denoted by w4, can be produced by creating an offset which would shift the center
of pressure of the aerodynamic forces longitudnally. The rank for the control effectiveness matrix corresponds to the
number of controllable degrees of freedom. The linear map has a rank of five, which means the results showed that
all the degrees of freedom were controlled except for the translation in the side force direction. It was proved that the
nonlinear system, when linearized, is controllable about hover. Similar to Schenato et. al in [4], Doman et. al in [5] has
one actuator per wing and generates maximum lift by maintaining the angle of attack at 45° by using passive pitching to
prove the importance of minimal actuation. In [5] the vehicle used for investigation is the Robofly that uses piezoelectric
actuators. It is controlled by varying the velocity profile of the wing strokes, hence the kinematic functions are based on
the flapping angle of the vehicle. As in [4], Doman et. al in [5] create a linear map from the linearised dynamics about
hover. The simulations showed that the controller performed well for the unsteady aerodynamics with minimal actuation.
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To design a controller for multiple flight modes, Taha in [1] introduces the concept of Central Pattern Generators
(CPGs). As defined by Hopper in [6], CPGs are "neural networks that can produce rhythmic patterned outputs without
rhythmic sensory or central input." The controller is not responsible to produce the specific pattern to drive the degrees
of freedom. Instead, the controller sets the frequency, amplitude and relative phase of the pattern, in turn reducing the
complexity of the signal generated from it. Chung and Dorothy [7] used Hopf oscillator as the CPG model for two
reasons: symmetry property and smooth bifurcation. The symmetry property helps in stabilising and smooth bifurcation
is used to switch smoothly from flapping to gliding flight.

B. Aerodynamic Modeling
To model insect flight accurately, an aerodynamic modelis required which calculates the forces and moments such as

lift and rolling moments, respectively. The most common method of formulating an aerodynamic model is through
performing experiements, and then data fitting the results to form an approximate relation that describe the aerodynamic
loads. As mentioned in [1], the model designed by Holst and Kuchemann in [8] is considered one of the first complete
models. In this model, it was proven that maximal thrust is acheived a the phase difference between pitch and plunge
angles of 90°. During early research of flapping wing models, quasi steady aerodynamics were used which is applicable
to slow flapping large birds in forward flight. Another noteworthy discovery is the phenomenon of Leading Edge Vortex
(LEV) which was discussed in [9] by Ellington et. al. A hawkmoth was placed in a wind tunnel for observation. The
observations made the existence of vortices clear. The phenomenon was further studied by creating a 3D mechanical
model of a hawkmoth with corresponding dimensions. Then, smoke was released from the leading edge of the wing as
it flapped, which showed vortices being formed at the beginning of the downstroke. These vortices then detach from the
wing after the middle of the downstroke. LEV causes a high-lift force and is a result of dynamic stall.

The most common aerodynamic models used for FWMAVs are quasi-steady. In [11], Khan and Agarwal present
quasi-steady aerodynamic model for a wing that has a flapping and pitching angle, but zero out-of-plane stroke angle.
To develop the model, translatory effects, rotational lift and added mass effects were considered while the viscous effects
were assumed negligible. They were successfully able to create a model that can be used to determine aerodynamic
loads and moments. Another quasi steady aerodynamic model is by Dickinson et. al [10], where the the model wing
was allowed to move with a constant velocity at a particular angle of attack and the aerodynamic forces were recorded.
In order to obtain greater lift, insects also make use of two other mechanisms called rotational lift and wake-capture
effects as discussed in [10]. An experiment performed in which a dynamically scaled model of the fruit fly is built and a
force sensor is added to the base of one wing that measures the aerodynamic forces over time. Both wings are capable
of rotational motion about three axes. The results showed two rotational force peaks at two separate times. The force
peak at the end of each half stroke is caused by the wing’s own rotation called rotational lift, while the larger force
peak is caused by the mechanism of wake capture, wherein the vortex shedding of the wing produces a negative lift in
turn benefiting the wing at the appropriate angle. The last model is a quasi-steady aerodynamic model based on blade
element theory by Wang et. al [12]. It considers LEV, rotational effect along with added mass effect like the Dickinson
et. al [10] model but also includes viscous effects. The experiment is set up in a quasi 2-d flow with freely falling plates.
Navier-Stokes equations are used to compare the results with numerical solutions. The results showed that there is a
rotational term proportional to angular velocity of the fluttering and tumbling plates that dominates the fluid circulation.

C. Dynamic Stability
To derive equations of motion of flight dynamics of FWMAVs, generally, three important assumptions are made.

Firstly, the wing intertial effects are assumed to be negligible. In systems where the wing mass is much smaller than
body mass, it is reasonable to ignore wing inertial effects. This reduces the order resulting in a less complex system. In
[13] a quasi steady aerodynamic model is used to compare the results of simulation when the wing mass is varied. The
full wing mass is initially set to 5.7% of the body mass. It showed that when zero wing mass is used, the results are
close to that of a standard aircraft. However, examining the results while varying wing mass as one-eigth of the wing
mass, one-half of the wing- mass and full wing mass produced results that moved progressively farther from the desired
outcome. It has been found that there exists a difference in the flight dynamics model behavior when the wing mass is as
low as 0.7% of the body mass. Hence, it is important to take the wing mass in consideration while performing stability
and control analysis.

To make the system autonomous, body dynamics is averaged over the flapping cycle. The second assumption made
to derive the equations of motion is that averaging does not have any undesirable effects on the final body dynamics.
Generally, the flight dynamics of a FWMAV can be converted to an autonmous system using the averaging theorem. In
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[14], Nayfeh and Mook test several different mechanical structures by exciting the structures with a low amplitude and
high frequency. The structures experimented with include cantilever beam, three arm frame and a composite plate.
Considering the example of the metallic cantilever beam which was slightly bent, it was excited at a high frequency of
32.50 Hz. This resulted in the activation of the first mode response with a large amplitude which is of additive nature.
Thus, the articles concludes that an excitation of low-amplitude, high-frequency can produce large amplitude responses
which would produce erroneous results by adding over every cycle.

The third assumption is that linearizing the non-linear dynamic model gives a well-rounded model. There are two
methods discussed in [1] to linearise the flight dynamics system. One method is to convert the nonlinear time periodic
system (NLTP) to a nonlinear time invariant system (NLTI). This NLTI can then be linearised to a linear time invariant
(LTI) whose stability analysis can be performed by simple matrix operations. The second method is to use the Floquet
theory to perform stability analysis of the linearised time periodic system. In [15], the quasi-steady aerodynamic model
from Dickinson et. al [10] is used along with nonlinear flight dynamics with six degrees of freedom of rigid body
and several flexibile DOFs. The stability analysis was performed using Floquet theory. The results obtained showed
unstable longitudnal modes and lateral modes. It has also been found that wing inertia caused a destabilizing effect on
the subsidence modes by studying the loci of the eigenvalues.

D. Control Design
There are two approaches to control FWMAV as discussed in [16] by Zhang: linear and non-linear design. In [17],

Schenato et. al develop a biomimetic insect model using standard aircraft aerodynamic model and time averaged forces
and moments. It is controlled using a switching controller and is successfully operated in hover. In [18], Schenato et. al
developed a flight control system for a flapping wing micromechanical flying insect. The flight dynamics is assumed to
be NLTI system which is then linearized to discrete time LTI system. Using Linear Quadratic Regulator theorem, a
LQR controller is created which was tested on a nonlinear, time-varying model. Stabilization was successfully acheived
with a steady-state error of less than 5° for orientation.

Nonlinear control design is desirable to create robust systems. In [19], Serrani et. al developed a robust controller
for a 3-DOF MAV model in hover. A case study is performed where the MAV moves simultaneously in both x and z
direction from a set initial point. The results show that without an initial error in pitch angle, the x trajectory converges
to its trim condition quickly. The controller is able to maintain the trajectory of a periodic orbit asymptotically stable
about a given point. Another example of nonlinear controller design is the adaptive controller applied to RoboBee
in [20]. Chirarattananon et. al in [20] developed an adaptive controller with the purpose of coping with modeling
uncertainities and nonlinear systems. The controller successfully engages hover as well as vertical takeoff and landing
but with a time delay of 0.2s. However, the time delay does not have any negative effects on stability. It is concluded
that, compared to non adaptive controllers, adaptive controllers result in fewer position errors. MAVs with a fuzzy
neural network controller have the advantage of being highly manuevrable. In [21] Guo et. al implement an insect-like
FWMAV model with averaged flight dynamics, a fuzzy neural network controller. The results showed that the controller
was able to robustly control the attitude and position making the vehicle highly maneuverable.

E. Actuation Mechanism

Fig. 2 Driving Mechanism developed by Hu and Deng [23]

It is desirable for FW-
MAVs to utilise minimal
actuation and one of the
common ways to acheive
it is by using smart mate-
rials like piezoelectric mo-
tors. However, to exe-
cute complex mechanisms
such as active pitch control
an equally complex driv-
ing mechanism amy be re-
quired. In [22], Balta, et.
al review actuation mehcan-
isms of four different models that are popularly known. The first model is one developed by Hu and Deng in [23],
referred to as the Purdue mechanism in [22], in which a 2.61gram flapping wing vehicle is actuated by a dc drive
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(a) AeroVironment gears setup (b) Flapping wing mechanism

Fig. 3 Flapping mechanism of the AeroVironment Hummingbird [22]

motor using a crank-rocker mechanism with a gear which behvaes as the input crank to the wings as shown in Fig. 2.
Each flapping wing has a four bar mechanism with separate outputs and share the input crank, hence, the wings can
rotate independently. It is found that the maximum angle of attack at 45degrees is aerodynamically optimal. The
simple structure of the vehicle produces reasonable lift and drag coefficients, making passive pitch control feasible.
The second mechanism is that of the AeroVironment hummingbird which weighs 19grams with a payload including
batteries, communication systems, motor and camera. The vehicle relies on motor driven crankshaft that is continuously
rotating. The mechanism as shown in Fig. 3a, involves two strings that connect the crankshaft to the pulleys at the wing
hinge flapping axis. Additionally, two other strings are used to connect the two pulleys. Therefore, the turning of the
crankshaft driven by a motor results in the pulleys to oscillate which makes the wings flap as shown in Fig. 3b.

The AeroVironment hummingbird is designed using light weight and durable materials. The gears are made of
PEEK, a strong plastic polymer, and the wing arms are carbon fiber with the wings made of flexible membrane. This
makes the vehicle simple yet effective. Similar to the mechanism developed by Hu and Deng, the hummingbird uses
passive pitch control by the flexibility of the wing which modifies the pitch as it flaps. The maximum angle of attack is
controlled by mechanical stops, hence, the design is unsuitable for experimental setting like the Purdue mechanism.
Another well-known mechanism is one developed by De Croon to control the DelFly which uses a crank mechanism that
connects the motor to the wings [22]. Asymmetric motion of the wings causes a rotational movements. By modifying
the drive train to be vertical to flight direction, the rotational effects can be neutralized. Lastly, the popular insect vehicle
used in [20] to demonstrate the advantage of adaptive controller, called RoboBee, is designed to mimic the biological
movement of insect wings by using a driving mechanism controlled by piezoelectric materials. Since it is a nano vehicle,
it provides a small size envelope along with high speed performance at a low weight. This mechanism is called the Air
force mechanism and the vehicle, shown in Fig. 4, demonstrates this technique. However, this driving mechanism also
employs passive pitch control like the previous methodologies.

Fig. 4 Version of RoboBee that demonstrates the Air force mechanism
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In [22], Balta et. al develop five prototypes inspired from the different mechanisms discussed and extrapolate the
most efficient prototypes to create a viable design. The final design combines a gear driven system with a dual level
design that imparts active pitch control. Figure 5 shows the mechanism of the prototype developed.

Fig. 5 Top and front view of the vehicle developed in [22]

The final prototype, shown in the above figure, uses the commercial mechanism of two crank rockers with gears
as input cranks. This controls the swing of the wing, and the maximum wing pitch is controlled by mechanical stops
added to an outer frame. The rate of change of wing pitch is controlled by including wing arms that run along guides on
the frame. This setup allowed for an active pitching angle of 40degrees during the testing of a previous prototype.
Another mechanism included in the current prototype is the use of parallel crank rockers driven by a timing belt. This
would allow for the model to yield theoretical ideal curves for wing swing and pitch. This mechanism was tested on a
model built using laser cutters. The model provided desirable results, hence, it was added to the final prototype. A few
other refinements were made the vehicle efficient, and are shown in Fig. 5. It was fabricated in a 3D printer using ABS
plastic making the vehicle lighter than the other prototypes. The developed model successfully mimics the motion of
hummingbird wings.

III. Aerodynamic Modeling
The flight dynamics of flapping flight has been of great interest for a while. It is a complex nonlinear, time varying

multi body system. The research started out with the study of bird and insect flights. However, with the growing need of
UAVs, the focus has shifted to designing flapping wing MAVs. The aerodynamics of FWMAVs utilise mechanisms
such as LEV [9], and rotational lift and wake capture [10]. LEV is used for lift generation in delta wing aircrafts that
undergo dynamic stall. However, for flapping flight, LEV has stable characteristics. Also, there is lift generated due to
the rotation of the wing at each half stroke which is called rotational lift observed by Dickinson et. al in [10]. At the
beginning of half strokes there is some additional lift caused by remaining wake from the previous half stroke which add
to the total lift. A comprehensive table with aerodynamic models is compiled in [1] and is shown below in Table 1.
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Properties Dickinson et. al Berman and Wang UVLM

Computational Cost X X −

LEV Contribution X X ×

Unsteadiness × × X

Rotational Lift X X X

Added Mass X X X

Wake Capture × × X

Viscous Friction × X ×

Table 1 Comparison of aerodynamic models that are applicable to hovering MAVs [1].

As mentioned previously, Dickinson et. al [10] model incorporates LEV and has algebraic forms. Similarly,
Breman and Wang [24] has algebraic forms, but takes viscousity into account in terms of viscous forces and dissipation.
The unsteady vortex lattice method (UVLM) simulates vortex kinematics throughout the airfoil surface and its wake.
Thus, the first two methods are cost effective and it appears as though there is no model that can account for the LEV
contribution as well as the unsteadiness of hovering kinematics. The quasi-steady model developed by Dickinson et. al
[10] is compact and provides algebraic expressions for coefficients of lift and drag as functions of angle of attack shown
in Equations 12 and 13. Another compact quasi-steady model is developed by Wang et. al [25] where the drag and lift
coefficients are calculated using experimentally obtained data.

CL =0.225 + 1.58 sin (2.13α − 7.20) (12)
CD =1.92 − 1.55 cos (2.04α − 9.82) (13)

However, these quasi-steady models do not account for the unsteady behavior of flapping flight and also do not
translate well for different wing shapes, since the coefficients in both models are experimentally obtained in both models,
it would change with varying aspect ratio. Therefore, a general formula for the lift coefficient is provided in [1] which
would vary with aspect ratio as shown in Equation 14.

CLα =
πAR

1 +
√
( πARa0

)2 + 1
(14)

where AR is the aspect ratio, i.e., AR = R2

S . R is the wing radius and S is the wing planform area. In equation 14, a0
is the lift curve slope of the two dimensional airfoil section

A. Approach
In [26], Taha et. al formulate the nonlinear, multi-body, time-varying mechanical equations taking into account the

LEV and rotational effects for longitudnal flight. In the study of flapping flight aerodynamics two major assumptions are
made: the wing inertial effects are considered negligible and the dynamics are averaged over a flapping cycle. Hence, in
the model presented by Taha and Hassan in [1] the wing inertial effects are taken into consideration, making the model a
multi-body formation. The four reference frames used to study the flight dynamics of a rigid wing FWMAV are shown
in Fig. 6.
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Fig. 6 FWMAV schematic diagram with four reference frames [26]

In Fig. 6, (xI, yI, zI ) is the inertial reference frame, (xb, yb, zb) is the body-fixed reference frame, (xs, ys, zs) is the
stroke plane reference frame and (xw, yw, zw) is the wing-fixed reference frame. The conventional Euler angle sequence
of yaw-pitch-roll (ψ − θ − φ) is shown, however, since longitudnal flight is considered, only θ is used for modeling. As
shown in Fig.6, the wing is at an angle β from the horizontal plane, and it represents the stroke plane angle. The three
Euler angles used to describe the wing motion are θ-φ-η. The out-of-stroke plane angle is denoted by θ and is called
the plunging angle. In hover, insects have a horizontal stroke plane without an out of plane motion, i.e., θ = 0. As
emphasized by Doman et. al in [5], the Harvard Robofly’s successful flight was attributed to minimal actuation. Hence,
out-of-plane motion is not considered. The back and forth motion of the wing is denoted by φ and is called the flapping
angle. The wing fixed frame is at an angle η from the stroke-plane, hence, η represents the pitching angle of the wing.

B. Implementation
The state space model used in this report is develeoped for unsteady aerodynamics of flapping flight by Taha and

Hassan [26]. The state vector denoted by q has five states; q = [x, z, θ, φ, η] where x and z are the displacements in the x
and z direction, and θ, φ, η, are the three Euler angles. For FWMAVs in hover, the flapping kinematics is considered to
be symmetric. The equations of motion are derived using the principle of virtual power which is then used to develop a
rigorous and general aerodynamic model as shown in the following equations. This model accounts for "the nonlinear
dependence of the non-autonomous aerodynamic loads on the aerodynamic state variables (u,w, Ûθ)" [26].

1
mw

X(x, t)
1

mw
Z(x, t)

1
Ix

L(x, t)
1
Iy

M(x, t)
1
Iz

N(x, t)


=



X0(t)
Z0(t)
L0(t)
M0(t)
N0(t)


+



Xu(t) Xw(t) Xq(t)
Zu(t) Zw(t) Zq(t)
Lu(t) Lw(t) Lq(t)
Mu(t) Mw(t) Mq(t)
Nu(t) Nw(t) Nq(t)


©«

u
w

Ûθ

ª®®¬ +
©«

Xnl(t)
Znl(t)
Lnl(t)
Mnl(t)
Nnl(t)

ª®®®®®®®¬
(15)

X0 =ρπ(kI11 −
1
4

I12) sin η Ûη Ûφ (16)

Z0 = −
1
2
ρCLα I21 sin η Ûφ| Ûφ| − ρπ(kI11 −

1
4

I12) cos η Ûη Ûφ (17)

L0 = −
1
2
ρCLα I31 sin η Ûφ| Ûφ| − ρπ(kI21 −

1
4

I22) cos η Ûη Ûφ (18)

M0 =
3
4
(−

1
2
ρCLα I22 sin η Ûφ| Ûφ| − ρπ(kI12 −

1
4

I13) cos η Ûη Ûφ) − kZ0 (19)

N0 = − ρπ(kI21 −
1
4

I22) sin η Ûη Ûφ (20)
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Xu =ρπ(kI01 −
1
4

I02)(cos β sin η cos φ + sin β cos η) Ûη (21)

Xw = − ρπ(kI01 −
1
4

I02)(sin β sin η cos φ − cos β cos η) Ûη (22)

Xq =ρπ(kI11 −
1
4

I12) sin η cos φ Ûφ − ρπ(xh(kI01 −
1
4

I02)(cos η cos(β − θ) − sin η cos φ sin(β − θ))

+ cos η sin φ(kI11 −
1
4

I12)) Ûη

(23)

Xnl =ρπ cos φ Ûθ(kI01 −
1
4

I02)(u(cos β sin η cos φ + sin β cos η) + w(cos β cos η − sin β sin η cos φ))

− ρπ(xh cos φ(kI01 −
1
4

I02)(cos η cos(β − θ) − sin η cos φ sin(β − θ)) + cos η sin φ(kI11 −
1
4

I12)) Ûθ
2

(24)

Zu = −
1
2
ρCLα I11(2 cos β sin η cos φ + sin β cos η)| Ûφ| − ρπ(kI01 −

1
4

I02)(cos β cos η cos φ − sin β sin η) Ûη (25)

Zw =ρπ(kI01 −
1
4

I02)(sin β cos η cos φ + cos β sin η) Ûη −
1
2
ρCLα I11(cos β cos η − 2 sin β sin η sin η cos φ) Ûφ (26)

Zq =
1
2
ρCLα I21 cos η sin φ| Ûφ|

+ ρCLα I11 | Ûφ|(xh sin β sin η cos θ cos φ +
1
2

cos β(2xh sin η sin θ cos φ + xh cos η cos θ)

+
1
2

xh sin β cos η sin θ) + ρπxh cos η cos φ sin(β − θ)(
1
4

I02 − kI01) Ûη

+ ρπxh sin η cos(β − θ)(
1
4

I02 − kI01) Ûη − ρπ sin η sin φ(kI11 −
1
4

I12) Ûη − ρπ cos η cos φ(kI11 −
1
4

I12) Ûφ

(27)

Znl = − ρπ cos φ Ûθ(kI01 −
1
4

I02)(u(cos β cos η cos φ − sin β sin η) + w(sin β cos η cos φ + cos β sin η))

+ Ûθ2(2πρxh cos φ(
1
4

I02 − kI01)(cos η cos φ sin (β − θ) + sin η cos(β − θ))

− 2πρ sin η sin φ cos φ(kI11 −
1
4

I12))

(28)
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Lu = −
1
2
ρCLα I21(2 cos β sin η cos φ + sin β cos η)| Ûφ| − ρπ(kI11 −

1
4

I12)(cos β cos η cos φ − sin β sin η) Ûη (29)

Lw =ρπ(kI11 −
1
4

I12)(sin β cos η cos φ + cos β sin η) Ûη −
1
2
ρCLα I21(cos β cos η − 2 sin β sin η cos φ)| Ûφ| (30)

Lq =
1
2
ρCLα I31 cos η sin φ| Ûφ| + ρCLα I21 | Ûφ|(xh sin β sin η cos θ cos φ

+
1
2

cos β(2xh sin η sin θ cos φ + xh cos η cos θ) +
1
2

xh sin β cos η sin θ)

+ ρπxh(
1
4

I12 − kI11) Ûη(cos η cos φ sin (β − θ) + sin η cos (β − θ))

− ρπ(kI21 −
1
4

I22)(sin η sin φ Ûη − cos η cos φ Ûφ)

(31)

Lnl = − ρπ cos φ(kI11 −
1
4

I12)(cos β cos η cos φ − sin β sin η) Ûθu

+ ρπ cos φ(kI11 −
1
4

I12)(sin β cos η cos φ + cos β sin η)| Ûθ |w

+ | Ûθ |2(2ρ − πxh cos φ(
1
4

I12 − kI11)(cos η cos φ sin (β − θ) + sin η cos (β − θ))

− 2ρπ sin η sin φ cos φ(kI21 −
1
4

I22))

(32)

Mu =
3
4
(−

1
2
ρCLα I12(2 cos β cos η cos φ + sin β sin η) Ûη)

− kZu

(33)

Mw =
3
4
(ρπ(kI02 −

1
4

I03)(sin β cos η cos φ + cos β sin η) Ûη −
1
2
ρCLα I12(cos β cos η − 2 sin β sin η cos φ)| Ûφ|)

− kZw

(34)

Mq =
3
4
(
1
2
ρCLα I22 cos η sin φ| Ûφ| + ρCLα I12 | Ûφ|[xh sin β sin η cos θ cos φ

+
1
2

cos β(2xh sin η sin θ cos φ + xh cos η cos θ) +
1
2

xh sin β cos η sin θ]

+ ρπxh cos η cos φ sin (β − θ)(
1
4

I03 − kI02) Ûη + ρπxh sin η cos (β − θ)(
1
4

I03 − kI02)| Ûη |

− ρπ sin η sin φ(kI12 −
1
4

I13) Ûη − ρπ cos η cos φ(kI12 −
1
4

I13) Ûφ) − kZq

(35)

Mnl =
3
4
(−ρπ(kI02 −

1
4

I03) cos φ Ûθ[u(cos β cos η cos φ − sin β sin η) − w(sin β cos η cos φ + cos β sin η)]

+ Ûθ2[2ρπxh(
1
4

I03 − kI02) cos φ(cos η cos φ sin (β − θ) + sin η cos (β − θ))

− 2ρπ(kI12 −
1
4

I13) sin η sin φ cos φ] − kZnl

(36)
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Nu = − ρπ(kI11 −
1
4

I12)(cos β sin η cos φ + sin β cos η)| Ûη | (37)

Nw =ρπ(kI11 −
1
4

I12)(sin β sin η cos φ − cos β cos η) Ûη (38)

Nq =ρπ(xh(kI11 −
1
4

I12)(cos η cos (β − θ) − sin η cos φ sin (β − θ)) + cos η sin φ(kI21 −
1
4

I22)) Ûη

− ρπ(kI21 −
1
4

I22) sin η cos φ Ûφ
(39)

Nnl = − ρπ(kI11 −
1
4

I12) cos φ Ûθ(u(cos β sin η cos φ + sin β cos η) + w(cos β cos η − sin β sin η cos φ))

+ ρπ | Ûθ |2(xh cos φ(kI11 −
1
4

I12)(cos η cos (β − θ) − sin η cos φ sin (β − θ)) + cos η sin φ(kI21 −
1
4

I22))

(40)

In the above Eq. 15, X and Z are the aerodynamic loads and L, M, N are the moments, mw is the mass of the wing,
Ix, Iy and Iz are the moment of inertia about x,y and z axis, respectively. The constant k is calculated as k = cr (1 − xor )
where cr is the root chord, xor is the normalized distance of the hinge point from the origin and xh is the position of the
hinge point with respect to the center of mass. Also, Imn is calculated as Imn = 2

∫ R

0 rmcn(r)dr where R is the wing
radius and c(r) is the spanwise chord distribtution. Additionally, ρ is the air density and CLα is the three dimensional
lift curve slope calculated using equation14. These equations are plugged into a Simulink to block diagram to get the
aerodyanmic loads and moments as shown in Fig. 7.

Fig. 7 Aerodynamic block diagram on Simulink.

In the above block diagram, Eq. 15 is represented in the form of Matlab function blocks. The block initialFnM
using Eqs. 16-20 calculates the initial loads and moments denoted by (X0, Z0, L0, M0, N0), the block aerodynamicFnM
using Eqs. 21-23, 25-27, 29-31,33-35 and 37-39 calculates the forces and moments with respect to the states and the
block nonlinearFnM using Eqns. 24, 28, 32, 36 and 40 calculates the nonlinear forces and moments. The aerodynamic
block receives the Euler angles η − φ − θ as inputs. The forces and moments from the blocks are then multiplied by the
appropriate constants to get the total forces and moments matrix.
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IV. Control Design
The aerodynamic-dynamic interaction can be created by relating the forces and moments from the aerodynamic

model to the averaged dynamics of flapping flight. The aerodynamic load experienced by a vehicle is controlled by the
velocity vector of the wing. However, in the case of hovering kinematics, the speed of flapping is the major factor. As
mentioned in Section 1.D, cycle-averaging of the flight dynamics produces the least erroneous results. In [1], Taha and
Hassan take into consideration the aerodynamic loads relative to the body motion in a "full nonlinear sense" which
yields a tightly linked aerodynamic and dynamic interaction. A schematic representation of the aerodynamic-dynamic
interaction is shown in Fig. 8.

Fig. 8 A schematic drawing of the aerodynamic-dynamic interaction from [1].

The flight dynamic model credited to Taha and Hassan in [27] is used to simulate the dynamics. The original model,
with five degrees of freedom, is reduced to three: two for the body, z which is the body displacement in vertical direction
and θ which is the body pitching angle, and one for the wing, φ which is the flapping angle. The pitching angle of the
wing (η) is assumed to vary based on the rate of change of flapping angle as shown in equation 41.

η(t) =

{
αm, Ûφ > 0

π − αm, Ûφ < 0

}
(41)

where αm is the mean angle of attack of the flapping wing. Hence the reduced order model in[27] is shown in Eq.
42.

M(q; sign( Ûφ)) Üq + fc(q, Ûq) = faero + gτφ (42)

M =


mv M12 M13

M21 M22 M23

0 0 Iyb

 (43)

M12 = − rcg cos φ sin θ − cd̂ cosαmsign( Ûφ) sin φ sin θ

M13 =cd̂ cosαm sin θ − rcg cos θ sin φ

M21 = − mwrcg cos φ sin θ − cd̂mw cosαmsign( Ûφ)sign(φ) sin θ

M22 = −
1
2

Ixw cosαm2 −
1
2

Izw sinαm2 +
IF
2
+

Ixw + Izw
2

M23 =
1
2
(Izw − Ixw)sign( Ûφ) sin(2αm) sin phi
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fc =



− Ûθ2(cd̂ sinαm cos θ + cd̂ cosαm sin θsign( Ûφ) cos φ − rcg sin θ sin φ)
−2 Ûθ Ûφ(cd̂ cosαm cos θsign(( Ûφ) sin φ + rcg cos θ cos φ)
+ Ûφ2(rcg sin θ sin φ − cd̂ cosαm sin θsign( Ûφ) cos φ) − gmv

− Ûθw(cd̂mw cosαm cos θsign( Ûφ) + mwrcg cos θ cos φ)
+w Ûφ(mwrcg sin θ sin φ − cd̂mw cosαm sin θsign( Ûφ) cos φ)

+ Ûθ2( 12 cosαm2(Izw − Ixw) sin φ cos φ + 1
2 sinαm2(Ixw − Izw) sin φ cos φ

+ 1
2 (−Ixw − Izw) sin φ cos φ + 1

2 Iyw sin 2φ)

0



(44)

faero =



−Fx(sinαm cos θ + cosαm sin θsign( Ûφ) cos φ) − Fz(sinαm sin θ cos φ − cosαm cos θsign( Ûφ))

sinαmMx − cosαmMzsign( Ûφ)

− cosαmMxsign( Ûφ) + My cos φ − sinαmMz sin φ


(45)

where M is the inertia matrix and can be calculated using Eq.43, fc contains force terms related to coriolis and
centripetal effects, faero represents the aerodynamic loads that was calculated in the previous section and τφ is the input
torque. The dynamics equation from 46 is rewritten to make it programmable for geometric control analysis as follows

Ûx = Z(x) + Y (x)τφ(t) (46)

where

Z(x) =

[
Ûq

M−1( faero − fc)

]
(47)

and

Y (x) =

[
0

M−1g

]
(48)

The input torque applied to the wing is a cosine wave and is connected to the dynamic block using a sine wave block
with a phase of 90°. Due to the reduction of the order of the model, there is no input torque to control η. Therefore, η is
calculated by creating a time delay from the φ signal and adding a gain block to operate the vehicle as per requirement.
The implementation of the flight dynamics in Simulink is shown in Fig. 9 below.
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Fig. 9 Flight dynamic block diagram on Simulink.

To simulate the dynamics in Simulink, two Matlab function blocks were set up. One function block calculates Z(x)
given by Eq. 47 and the other calculates Y (x) given by Eq. 48 which are used in Eq. 46. This gives the first order
derivative of the states, Ûx. This signal is passed through an integrator block with initial condition set at 0 for all states to
calculate the instataneous states.

A. Averaging tools
Averaging can be used for the conversion of non-autonomous system to autonomous system. In [27], the averaging

theorem is explored in an attempt to make the current model autonomous. The averaging theorem can be applied to any
smooth vector field. The state vector X(x, t) of flight dynamics must be averaged, however, it is not smooth in all its
states. Instead the generalized averaging theory, introduced by Sarychev in[28], performs a complete averaging using
Lie brackets between two vector fields. Additionally, variation of constants formula (VOC) can be applied to systems
subjected to high amplitude period forcing, to make the system receptive to direct averaging. Using the VOC yields a
pullback vector that can be averaged to get the averaged dynamics of the original system.

Equation 46 describes the flight dynamics of a non-autonomous FWMAV. However, by applying direct averaging
theorem, the system produces trivial results causing no effect of flapping on dynamics. Therefore, VOC is applied to the
system 46 to get the pullback vector, as shown in Eq. 49.

F(x, t) = Z(x) + [Y, Z]
∫ t

0
τφ(s1)ds1 + [Y, [Y, Z]]

∫ t

0

∫ s1

0
τφ(s2)τφ(s1)ds2ds1 (49)

where F(x, t) represents the pullback vector, Z and Y are the vectors from the original system 46 and τφ is the input
torque.

V. Results
The simulation is set up as shown in Fig. 10. The aerodynamic block shown in the figure below calculates the

forces and moments using equations listed in section III.B and the dynamic block computes the vertical displacement
and velocity, and flapping angle and rate according to section IV. The only control input is the torque controlling the
flapping angle, τφ .
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Fig. 10 Simulink block diagram of flapping wing vehicle.

Since there is no active pitch control, the pitching moment My computed in the aerodynamic block is not used to
calculate the states in the dynamic block. To run the model, the morphological parameters of the Hawkmoth are used as
described in [29], in which the full kinematics in the longitudnal direction of major insects is detailed.

R = 51.9mm S = 947.8mm2 c = 18.33mm,

r̂1 = 0.44 r̂2 = 0.525,

mb = 1.648g Iyb = 2.080 ∗ 10−2g.mm2

The simulation time is set to 10 seconds and the control input is manipulated to acheive different flight conditions.
Figures 11, 12 and 13 show the states: displacement, flapping angle, vertical velocity and flapping rate in ascend,
descend and hover. The units for vertical displacement and velocity are mm and mm/sec, respectively. Similarly,
the units for flapping angle and rate are rad and rad/sec. As shown for the case of negative vertical displacement,
i.e., climbing flight condition in Fig. 11, there is an initial downward movement, represented by z, which converts to
ascending flight as the vehicle continues flapping shown by negative displacement since z points downwards. Hence,
the vertical displacement is ±2m with the final position of the vehicle at 2m. The vertical velocity, denoted by w, has a
positive value initially which validates the initial positive displacement in the downward direction. The flapping angle
and rate, which is controlled by τφ , are also shown in Fig. 11 denoted by φ and Ûφ. The flapping rate is a sinusoidal wave
with a constant amplitude. However, due to noise in the flapping rate signal, the integration yields a rising flapping
angle signal with small difference of 0.2rad between the initial and final peaks.

On the other hand, Fig. 12 shows the gradual descent of the vehicle. The vertical velocity, represented by w in the
third signal, experiences a positive change, peaks and settles down at a steady state value of 0mm/sec. This is reflected
in vertical displacement, represented by z in the first signal, in which the displacement reaches a steady state value of 8m
in the downward direction. The flapping angle and rate, represented by the second and fourth signal respectively, yield
similar results to ascending flight conditions. The flapping rate signal is a sinusoidal wave with a constant amplitude
and some noise, whereas the flapping angle is a rising sinusoidal wave as a result of integration of the noise; due to
the difference in the ranges of the amplitude of the flapping rate signal compared to flapping angle signal, any small
disturbance in Ûφ appears large in φ.
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Fig. 11 Signals generated for the flight condition of ascend.

Fig. 12 Signals generated for the flight condition of descend.
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Fig. 13 Signals generated for the flight condition of hover.

The third flight condition this vehicle obtained is hover as shown in in Fig. 13. The simulation time is set to 5sec as
opposed to 10sec in the case of ascent and descent. The frequency of the input torque τφ is 165.25rad/sec and the
relation presented in Eq. 50 between the flapping and torque amplitude is used to approximate the input torque.

φ =
U

ω2Ix sinαm2 (50)

In eq. 50, φ is the flapping angle, ω is the angular freqeuncy calculated from the natural frequency of a Hawkmoth,
i.e. 26.3Hz or 165.25rad/sec, Ix is the moment of inertia about the x axis of the wing and U is the amplitude of the
input torque, which is represented as a sinusoidal function as shown in eq. 51.

τφ = U cosωt (51)
In fig. 13, the vertical displacement is ±.5m yielding a hovering motion with an initial downward movement and

then an equal upward movement. The flapping angle and rate yield results similar to the ascent and descent case. To
obtain these conditions the parameters for the input torque along with the flapping and wing pitch angle relation are
modified as shown in Table 2.

Flight Condition Amplitude of input torque Displacement (in mm) Flapping angle(in rad) Gain

Ascend 5953200 ±2000 ±0.45 9
Descend 6571200 −8000 ±0.55 7
Hover 4220050 ±500 ±0.39 15
Table 2 Parameters for different flight conditions at frequency 165 rad/sec (or 26Hz).

VI. Conclusion
With the growing interest in FWMAVs, there has been a focus set on understanding the dynamics of insect flight.

Research shows that insect flight can not be explained using conventional aircraft flight dynamic models. This report
summarizes significant work done in understanding the flight of flapping wing vehicles. A comprehensive review of
the current aerodynamic models, flight dynamics, control approaches and actuation mechanisms has beeen performed.
Based on the literature review, there is not any aerodynamic model that account for the unsteadiness as well as consider
hovering mechanisms of insects simultaneously.

Taha in [1] developed "an unsteady aerodynamic model whose asymptotic steady behavior is dictated by the
empirical models that capture the quasi-steady effects of the leading edge vortex." Along with this, an analytical flight

18



dynamic model that captures the high lift mechanisms of insect flight is included. This nonlinear flight dynamic model,
produces erroneous results from direct averaging. Hence, it goes through cycle averaging to yield steady flight. This is
established by using VOC formula to produce a pullback vector which is then averaged. However for the scope of this
project the nonlinear flight dynamic is implemented ignoring the moment about the y axis since there is no active pitch
control. The actuation mechanism used to drive the vehicle is through input torques that control the flapping of the
wing. The model does not include active pitch control, hence, the moment about y-axis is considered zero rendering the
body pitch angle and body pitch rate to be non-contributing states. To demonstrate the validity of the model, properties
associated with Hawkmoth are used to run the simulation. Using the aerodynamic model presented in [26] combined
with the flight dynamic model from [27] presented by Taha et. al, the results produced show that the presented model
functions by controlling the input torque and yields desirable outputs for different flight conditions. By changing the
amplitude of the actuating torque, which alters the flapping angle, and also changing the wing pitch angle, the model is
able to ascend, descend and hover.

Including active pitch control of the flapping wings requires complex computation which can result in expensive
computation cost. However, to produce accurate results such actuation mechanisms need to be modeled. Also, with a
more complex system a robust controller with adaptive control can be considered incorporation with simple analytical
aerodynamic model. Since, hover is a highly demanded feature in insect flight, more research needs to be done in the
transition phase from forward flight to hover. Additionally, control laws need to be developed to conduct this transition
effectively.
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